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Climate Adaptation Master Plan for Water — Training Workshop

Purpose

The Training Workshop’s goal is to enhance understanding,
confidence, and clarity in climate adaptation planning,
incorporating scenario planning and adaptive management to
optimize preparedness for Metropolitan.

The CAMP4W process will establish a methodology for evaluating
options through a Climate Decision-Making Framework and will
provide a roadmap for identifying solutions to mitigating the
identified risks. It will be a living document that will be updated to

identify changing conditions and to report those changes to the
Board.



Today's Agenda



Obijectives

1 ) Increase the Board and Member Agencies’

Climate Adaptation understanding of the uncertainty associated with
Master Plan for Water climate adaptation planning;
y 2) Increase the Board and Member Agencies’
T()day S confidence in the CAMP4W process;
ObjGCtiVGS 3) Provide a clear description of scenario planning
and climate adaptation planning processes and

application to CAMP4W,; and
4) bemonstrate how adaptive management will
inform Metropolitan to avoid overbuilding while

CAM P4W maximizing preparedness

Climate Adaptation
Master Plan for Water




Lpnate Speaker(s)

Adapation 9:00 AM Chair Ortega;
?S?Ster Plan Welcome and Introductions Set Objectives for the Day Task Force Chair Petersen
Water 9:15 AM Session 1: Using Climate Science & Modeling Dr. Alex Hall, UCLA
Today 3 10:00 AM Q&A - Discussion Dr. Alex Hall, Met Staff
Agenda 10:15 AM Break =
10:30 AM Thought Exercise Dr. Kit Batten
10:45 AM Session 2: Scenario Planning Dr. Robert Lempert, RAND
11:30 AM Q&A - Discussion Dr. Robert Lempert, Met Staff
11:45 PM Lunch -
et Session 3: Climate Adaptation Planning o JuIiettglli:riTl?i-eHlf;\]Zt{.Pathways
1:15 PM Q&A - Discussion Dr. Juliette Finzi-Hart, Met Staff
1:45 PM Climate Planning Exercise in Small Groups Dr. Robert Lempert
S0l Discussion / Reflection 2 ggﬁg: Ii?zm(?r?)r;’sga A
415PM  Session 4: Signposting and CAMP4W Adaptive Management Met Staff

5:00 PM Adjourn Task Force Chair Petersen



Session |: Using
Climate Science and

Modeling
Dr. Alex Hall, UCLA



Climate Change Impacts on Water
Resources in Southern California

Prepared for the Metropolitan Water District of Southern California

Alex Hall
Professor, Atmospheric and Oceanic Sciences Department
Director, UCLA Sustainable LA Grand Challenge

UCLA

Sustainable LA
Grand Challenge
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THE GREENHOUSE EFFECT

Why is climate change occurring?

Some solar radiation Some of the infrared radiation
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How do we know climate change is caused by humans?

(b) Change in global surface temperature (annual average) as observed and
simulated using human & natural and only natural factors (both 1850-2020)

°C
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{ simulated
human &
natural
Temperatures
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natural only
(solar &
volcanic)
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Recent Temperatures in the U.S. Already Showing Warming

Summer

temperature

change S

2017-2021 vs. 1971-2000 '
Il

Cooler Warmer



Climate Projections: Global Climate Models

(a) Global surface temperature change relative to 1850-1900

°6C
3 SSP5-8.5
4 SSP3-7.0
3 ____— SSP2-45
2 SSP1-2.6
Global Climate Models 0
There are dozens of 1
these, developed at 1950 2000 2015 2050 2100
centers around the
world

Note “SSPs” are equivalent to “RCPs”



Climate Projections: Global Climate Models

Annual mean temperature change

SSP3-7.0 (2041-60) SSP3-7.0 (2081-2100)

Y | N Colour | Robust signal
4 4321050051 2 3 5 6 2000 No change or no robust signal
¢ Conflicting signals




Climate Projections: Uncertainty

There are three main types of uncertainty associated
with climate projections:

1. Emission Scenario Uncertainty
o  Uncertainty due choice of emissions
trajectory (i.e., economic estimate of
future chemical emissions, RCPs, and
now SSPs)

2. Model Physics Uncertainty
o  Uncertainty due to the construction of the
models themselves (i.e., “model physics”).
Different models give different answers.

3. Uncertainty due to Internal Variability
o  Uncertainty due to the natural phasing of
climate variability (i.e., timing of El Nifio)



Climate Projections: Uncertainty

There are three main types of uncertainty
associated with climate projections:

1. Emission Scenario Uncertainty
o Uncertainty due choice of emissions
trajectory (i.e., economic estimate of
future chemical emissions, RCPs, and
now SSPs)

2. Model Physics Uncertainty
o Uncertainty due to the construction of the

models themselves (i.e., “model physics”).

Different models give different answers.

3. Uncertainty due to Internal Variability
o  Uncertainty due to the natural phasing of
climate variability (i.e., timing of El Nifio)

Fractional uncertainty

bt
L

o
o

=
»

0.21

Global, decadal mean surface air temperature

A

Total

Model

Internal variabllity

Scenario |

20 40 60
Lead time [years from 2000]

80

100



Effect of Internal Variability

Sierra Nevada End of Century Changes
for Precip, Temp and Streamflow
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Effect of Internal Variability

Downscaled data, same
emissions scenario (SSP3-7.0)
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Climate Projections: Downscaling

Global Climate Model
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California’s Projected (Downscaled) Future: Maximum Temperature

Figure 1

Projected Increases in Average Maximum Temperatures
Are Greatest in Inland and Southern California

Mid-Century 2035-2064 End of Century 2070-2099

RCP4.5
emissions scenario

Reflects changas from historical basaling 30-year averags maximum temperaturas (1961-1090). Thess astimates assume the modearate climate change
scanark of *RCP 4.5," in which International practices rasult In the rate of workdwide greanhouse gas emissions slowly declining In the coming decades.

Data from www.Cal-Adapt.org



Aspects of the WUS Water Cycle that Respond to Climate

Changes in
Snowmelt-
Runoff
Relationship
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Climate Warming is Projected to Cause a Reduction in Sierra Snowpack

i Change in Snow Water Equivalent,
Sierra Nevada
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The loss of snow is associated with a change in the
timing of Sierra Runoff

® RCP8.5
® Historical Data
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Baseline
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End of Century

2081-2100 Schwartz et al. 2017

Downscaled Data
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Aspects of the WUS Water Cycle that Respond to Climate

Changes in
Snowmelt-
Runoff
Relationship
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Warming that’s already occurred has led to a reduction in streamflow

Colorado River Basin
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Figure 7. Reductions in runoff and peak integrated SWE, based on the overall
impact of warming and CO,, and how these reductions relate to anthropogenic

Downscaled Reanalysis Data warming.
Bass et al 2023



Temperature increases wildfire breadth and intensity

Fire in forests

T 202Q. |
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Wildfires lead to sediment runoff, which can affect reservoirs

There has been so much sedimentation at the Paonia

Reservoir in Gunnison County, Colorado, that the bottom of the
lake is now above the outlet. (Jeffrey Beall / Flickr)



Aspects of the WUS Water Cycle that Respond to Climate

Changes in
Snowmelt-
Runoff
Relationship
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Future of the Flooding

Extreme precipitation increases in intensity
with every degree of climate warming

Global Data
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Future of the Flooding Huang et al. 2020

Large change in snow and surface runoff during large atmospheric rivers by the end of the century.
ARs produce more precipitation, but more falls as rain than snow — huge increase in streamflow
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Future of the Drought

Drought frequency increases globally with climate warming

Changes in 10-year soil moisture drought in drying regions

(a) Drought intensity (b) Drought frequency (c) Drying regions
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Future of the Drought

Downscaled Data, same
Emissions scenario (SSP3-7.0)
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Future of the Drought

Temperature determines the extent and intensity of streamflow drought more so than
precipitation in the Sierra Nevada Mountains

a)| | { b)

Baseline
Precip-driven
Temp-driven

| Total: -5.79 (km°/year) | Total: -1.32 (km°/year)

-1.2-0.8-0.4 0.0 0.4 0.8 1.2
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Tying is all Together

We can integrate the high resolution climate data
with modeling of water resource infrastructure to

assess policy choices under climate change
Colorado River Example:

This projected utilized:
o 10 high-resolution GCMs, SSP3-7.0 scenario
o A calibrated hydrological model
« Lake level models (for Lake Powell and Lake
Mead)
« A Decision-Making Under Deep Uncertainty
framework

We were able to evaluate current and proposed
policy to manage the Colorado River Basin,
showing that the business-as-usual policy would
result in sustained dead pool conditions.
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Key Takeaways/Conclusions

e Projected climate data includes quantifiable uncertainty (emissions scenario, models, internal
variability)

e Regional climate studies usually require high-resolution data (necessitating downscaling
procedures)

e Using climate model data we have shown examples describing the regional climate change
response:

o snowpack decreases significantly,
o evaporation increases
o hydrological extremes become more frequent

e Lastly, we can couple climate data and water infrastructure models, enabling targeted analysis of
policy choices (e.g., the CO River Example)



Thank you.



Session |: QeA and

Discussion
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Thought kkxercise

Consider the following questions:

1) On a scale of 1-10, what is your level of understanding on
the concept and source of uncertainty in climate planning?

2) How do you think Climate Adaptation Planning differs from
other planning processes that you've engaged in?

3) Why do you think adaptive management is important in the
CAMP4W process?



Session 2: Scenario
Planning

Dr. Robert Lempert,
RAND



Planning is indispensable

But the future is sure to surprise
Uus



Water Managers Have L.ong Addressed Uncertainty,
But Today Face New Challenges

In California water managers have long addressed extreme
hydrologic variability via:
— Diverse supplies

— Safety factors
— Adjusting plans and operational rules over time

New challenges include:
* Increased climate variability and change
“End of stationarity”
* Increased need and opportunities for collaboration
« Changing technologies and economies
- More financial, environmental, and other constraints



Today We'll Discuss

- Scenario Planning

- Scenarios and Time-Bound Targets



Three Approaches Can Support
Water Agency Planning

1. Classic Decision Analysis
— Plan to the most likely future

2. Scenario Planning
— Consider a wide range of plausible futures
— Use storylines to help understand and communicate scenarios
— ldentify plans robust over many scenarios

3. Robust decision making
— Use thousands of simulation model runs to
» Help identify most policy-relevant scenarios
« Stress test proposed plans
 Inform the development of more robust plans

Mearns et. al. 2010



Three Approaches Can Support
Water Agency Planning

1. Classic Decision Analysis
— Plan to the most likely future

Optimizing for a best-estimate future
sometimes yields effective plans




Three Approaches Can Support
Water Agency Planning

1. Classic Decision Analysis
— Plan to the most likely future

But what happens when we are wrong
about the future?

e

Source:

http://www.hockscqc.com/article

“The most likely scenario isn't” s/tunnelvision/tunnel-vision.jpg
Herman Kahn



Three Approaches Can Support
Water Agency Planning

1. Classic Decision Analysis ¢
— Plan to the most likely future ’

2. Scenario Planning
— Consider a wide range of plausible futures

— Use storylines to help understand and communicate scenarios
— ldentify plans robust over many scenarios

3. Robust decision making
— Use thousands of simulation model runs to
« Help identify most policy-relevant scenarios
« Stress test proposed plans

 Inform the development of more robust plans Mearns et. al. 2010



What Are Scenarios?

Scenarios are focused descriptions of fundamentally different
futures, often presented in a coherent script-like or narrative fashion

Schoemaker (1993)

A scenario is a plausible description of how the future may develop based on a coherent
and internally consistent set of assumptions about key driving forces (e.g., rate of
technological change, prices) and relationships. Note that scenarios are neither
predictions nor forecasts, but are used to provide a view of the implications of
developments and actions.

IPCC Sixth Assessment Report, Glossary (2022)



Humans Are Avid Scenario Builders

We:
Tell stories
Picture future situations
Imagine each other’s experiences
Contemplate potential explanations
Plan how to teach
Reflect on moral dilemmas

The ability to create and share scenarios represents a key

difference between humans and other animals
Suddendorf (2013)



There Exist Different Types of Scenarios

4 N

Explorative
What might happen?

Used to help ensure decision options
reach goals no matter what the future
brings

- /

Used to descri@ alternative decision

options




Scenarios Provide Benefits for Decision Makers

Scenarios can help:

Reduce over-confidence

Expand the range of options
considered

Facilitate collaboration among people who "
disagree on expectations and values

Lempert (2013)



[PCC Employs Scenarios to Explore a Range
of 215 Century Greenhouse Gas Concentrations

Representative Concentration Pathways developed for Intergovernmental Panel on
Climate Change (IPCC)
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Water Agencies Often Use Scenarios

Warmer Climate

Example scenarios

Weak Economy Strong Economy

- —
3 \,
THE BIG UGLY HOT AND HAPPENING

Hot Climate

D) DENVER WATER



Scenario Planning Process
Moves From Context to Plans

|dentify the driving forces

- .
- « Understand the
¥

implications of each future

-
-
ol

Compare and contrast
actions. Identify common .

actions across futures Adopted from Ralph Marra with

SWRC
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Work Often Proceeds in Stages

. |dentify the driving forces .

Understand the «
implications of each future




Metropolitan Has Developed Scenarios

Lower
Demand on
MWD

Greater Imported Supply Stability

/C Low Demand \

Reduced Imports

-

Stable Imports

- J

"

\
High Demand B

J

Less Imported Supply Stability

Higher
Demand on
MWD

Source: Approach for
Developing IRP
Scenario-Based Portfolios,
July 21, 2021



Supply Gap Varies Over Scenarios

Greater Imported Supply Stability

Lower Higher
Demand Demand
on MWD on MWD

Less Imported Supply Stability

Forecast year

Source: Approach for Developing IRP
Scenario-Based Portfolios, July 21, 2021
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Today We'll Discuss

 Scenario Planning

» Scenarios and Time-Bound Targets



Water Agencies Can Use Scenarios to Inform Plans
That Adjust Over Time to New Information

Near-term actions
Low regrets
Shaping and hedging

Scenarios

Present

Trigger points

Adaptive strategies include: _ _ Thanks to Laurna Kaatz

. Near-term actions Contingent actions

- Trigger points

- Contingent actions Haasnoot et. al. (2013) Dynamic Adaptive Policy Pathways: A New
Method for Crafting Robust Decisions for a Deeply Uncertain World.
Global Environmental Change




Adaptive Plans Emerge From Latter Parts of Scenario
Planning Process

g

Compare and contrast
actions. Identify common .
actions across futures




Simple Example of Scenarios and Time-Bound Target

Example based on South Florida Water Management District

 Challenge:

— Extensive infrastructure exists to drain residential neighborhoods in South Florida, but rising sea
levels increase flood risk

e Overall Goal:

. House by C-7 canal
— Hold flood risk constant at current levels

 Options include
1. Retain current infrastructure
2. Install new pumps over next two years
3. Raise all houses by 6 feet over next thirty years

Coastal gate § et g
e Scenarios for C-7 canal [ =.%

A. Rapid sea level rise

B. Slow sea level rise

Bouwer, Haasnoot, Wagenaar, Roscoe (2018) Assessment of alternative flood mitigation strategies for the C-7
Basin in Miami, Florida Deltares




Adaptive Pathways “Subway Maps” Help
Organize Thresholds and Actions Over Time

Near-term
Cost/Difficulty
Raise houses High
Current |
Infrastructure
Low
Install pumps
Amount of sea level rise =———-——————s —_—)
. i L T ——— N
Sea level rise  Fastrise
SCENARIOS 25 50
Slow rise —————4————>
25 50 YEARS
Range over I Threshold where policy © Revise policy

which policy is

, fails to meet goals
effective



Adaptive Pathways Inform Significant Investments

Adaptive Pathway Map for Thames River Estuary

Defra and upper part of Top of new Previous extremsa
Sea level rise scenarios new TE2100 likely range H++ range used in TE2100
0m im 2m S 4m
Maximum water O s : Prc i
level rise: ’ ; -
Improve Thames Barrier and raise g '
downstream defenses - :
. - ¢
Over-rotate Thames Flood storage, improve Thames -
Barrier and restore Barrier, raise upstream and '
interim defenses downstream defenses :
Flood storage, over-rotate Thames ' '
w— Link to alternative Raise defenses Barrier, raise upstream and v
measures downstream defenses 2 -
h ) * :
won Possible future i 7 ‘ '
adaptation route (or Flood storage, restare : '
pathway), allowing for interim defenses ‘ '
different degrees of sea s ;
level rise through time 2 ) ;
R 3 New barrier, retain Thames Barrier, raise defenses :
- Predicted maximum : - i '
water level under ‘ ’
each scenario New barrier, raise defenses -
B Measures for . ‘
managing flood risk
indicating effective New barrier
range against

http://blogs.worldbank.org/sustainablecities/go-flow-adaptive-management-urban-flood-risk,
Accessed May 22, 2023



http://blogs.worldbank.org/sustainablecities/go-flow-adaptive-management-urban-flood-risk.%20Accessed%20May%2021

Scenario Planning

 Scenario Planning IS about being prepared for whatever
happens in the future

» Scenario Planning is NOT about envisioning what we want
to happen in the future or predicting what will happen in
the future



Scenarios Help People Make Better Decisions,
Not Better Predictions

Basic principles

1. Consider multiple futures, not one single future, in your planning. Choose these futures to stress test
your organization’s plans

2. Seek robust plans that perform well over many Plan over multiple futures
futures, not optimal plans designed for a single,

best-estimate future e

. . . g i

3. Make your plans flexible and adaptive, which :l{*_-;gg
often makes them more robust ' ’

s

——

Scenarios:
 |dentify plans robust and resilient over many futures

« Facilitate engagement and consensus among diverse
stakeholders




Thank you!

http://www.rand.org/pardee.htm|

www.rand.org/water

THE SOCIETY FOR
D ecision
Moaking under

Deep
Pard ee Center Uncertainty

http://www.deepuncertainty.org



Session 2: QeA and

Discussion
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Session o: Climate
Adaptation Planning
Dr. Juliette Finzi-Hart,
Pathways Climate
Institute



Adaptation
Planning and
Adaptation
Pathways

Juliette Finzi Hart, Ph.D.
Pathways Climate Institute
March 18, 2024




Climate Action Terminology

Climate change adaptation or climate adaptation
means taking action to prepare for and adjust to
both the current and projected impacts of climate
change.

Climate change mitigation refers to actions
limiting the magnitude and rate of future climate
change by reducing greenhouse gas emissions.

N @
S W | 90922

- ) Climate Action Plan
Climate .
Action Implementation

Plan Progress Report C A M P W

2021 GHG Toventory and

Climate Adaptation
TR Master Plan for Water 5\ ipsw Objectives:

Published: Apeil 2023

lmplementation U pdate

255,/
AL ' Bl * Increase the resiliency and reliability of Southern California’s water

reater flexibility into our regional water storage and delivery
¥

THE METROPOLUITAN WATER INSTRICT
OF SOUTHIRN CALIFORNIA




Climate Adaptation'Terminology

Climate resilience can be generally defined as the
capacity of a system to maintain function in the face of
stresses imposed by climate change and to adapt the
system to be better prepared for future climate impacts.

ﬁ Climate Climate
Mitigation Adaptation

Adaptation pathways is an approach that allows decision
makers to build adaptive capacity, prioritize strategies, stagger
investment, and maintain flexibility.

Adaptive capacity is the ability of a human or natural system to adjust to climate
change by moderating potential damages, taking advantage of opportunities, or

coping with the consequences.

Climate-adaptive design aims to create infrastructure that
can adapt to changing conditions, reducing vulnerability

and increasing sustainability.



Federal Climate Adaptation Policies adaptation planning
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California Climate Adaptation Policies adaptation planning

adaptation pathways

Calllornia Adaptalion Panning Guide

APPENDIX B:
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e ADAPTATION PATHWAYS: AN OVERVIEW
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' Figure B-1. Adaptation Planning Process

A. Exhence operational shernatives
R dnstall cooling aquipreet m

irpaciud shevalor machinary oo

C. increass olevator medunduncy by
fi\ adding a heat renlient slevator

D, Redesign and replace current slevaton
with hest-resilent elovatons
Legend
©

— Adaptation actian
O Trarmsfer point
l Aduptation sctian no
AR, \31 fonger visble

emwe  Adaptation action

> patentially viabie
N Define i
June 2020 Assany Adaplation
/Ul Framework & : i |
strategles Source: Los Angeles County Metropolitan Transportation Authority (Metro). Metro
: Climate Action and Adaptation Plan 2019, 2019 Los Angeles: author, page 38.
DE;P"-‘-"-‘ p o %6 i s Note: When conditions reach a trigger (numbers), the adaptation strategy changes
PRI, 08 sl to one of the other options.

& Adjust

https://resilientca.org/apg/



CA Climate-Safe Ian'aStI‘UCture adaptation pathways

Paying it Forward:

The Path Toward Climate-Safe
Infrastructure in California

Adaptation Pathways

| Trigger Level 3
|
‘ F S0-year planning horizon/design life

STEP 2: For now infrastrcture with 30-.year or longer planning horizons/design
¢ Nife, plan for the performance level required In 304 years from the time the

i infrastructure will be in place, using # combination of strutegies to achievs the
i desired level of performance under climate conditions at that time.

30-year planning horzon/design life

Trigger Level 2

Magnitude of Climate Indicator of Interest

Trigger Level 1

- STEP 1: Determine thresholds
of significance where climasts

2000 impacts would cause unsafe Now 2025 2050 2070 Time
1 - g CNIONS OF ST RS [ Key: [ Steps for existing infrastructure
A Report of the Climate-Safe Infrastructure Working distuptions to performance.

Step for new infrastructure

Group to the California State Legislature and the

5 . Step for both existing and new Infrastructure
Strategic Growth Council

September 2018




adaptation pathways

Even Water Engineers Do it

ASCE Manuals and
Reports on Engintenng
Practice No. 140

Standard Practice
for Sustainable
Infrastructure

—— A AN .
"~

o S bel s 4 iy A
o u-.mmnut...:""' (-

o< it

Nk
—
Mo T Chmininmnde s 4 ¥
.':":_‘,\9-......
et wwnin u\
il e St i wpartor,

Flexible Adaptation Pathways: Approach to implementing
~ = infrastructure solutions with a long-time horizon by building
- flexibility into the overall adaptation strategy, which allows for




Why Adaptive Management?
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Sea Level Rise Adaptation Pathways —
City of Santa Cruz

Main and Cowell Beaches: Accommodate then Retreat
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Sea Level Rise Pathways — Port of San Francisco

adaptation pathways

San Francisco Chronicle

BAY AREA // SAN FRANCISCO

How S.F.s Embarcadero could be transformed
by this $13.5 billion proposal

By John King
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Incorporate nature
based features, such as
creek enhancements
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Sea Level Rise Pathways — Port of San Francisco

adaptation pathways

Projected Sea Level Rise:

Flood Study and Southwest 2022 San Francisco Waterfront Coastal Flood Study
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Sea Level Rise Pathways — Port of San Francisco

adaptation pathways

San Francisco Chronicle
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How S.F.s Embarcadero could be transformed
by this $13.5 billion proposal

By John Kin AN
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“Putting things in place now, that will allow us to reach our (future)
goals. I like that,” said Brian Harper, civil works director of the Corps’
Regional Planning and Environmental Center. "Let’s use time as our

friend, not an enemy.”



Sea Level Rise Pathways — Port of San Francisco

adaptation pathways

SOUTH BEACH / MISSION BAY SUMMARY TABLE

15TACTIONS
Sea Level Rise /ﬁ Elevated shoreline to withstand 1.5’ of EARLY PROJECT
Protection X é’ Sea Level Rise (not included in Flood Study)

Seismic
Improvements

Connection to the
Waterfront

Asset and System
Protection

Nature-Based
Features

Ground improvements under roadways,
shoreline promenades, and open spaces

Visual and physical connections
maintained, opportunities to access water

on berms

Pier 50 Earthquake Improvement Project —
Seismic risk assessment of existing pier and
shed structures

Pier 24 % to Pier 28 % Seawall Earthquake
Safety Project — stabilizing vulnerable portions
of the wall and wharf substructures supporting
the Promenade

Transit and utility networks are defended,
bridges remain in place

Vegetated berms along Mission Creek and
Mission Bay, and nature-based features at
Crane Cove Park

SUBSEQUENT ACTIONS

e Elevate shoreline to withstand 3.5’ of Sea

Level Rise

e Incorporate additional nature based

features along the creek and Bay shoreline

Engineers.

25
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USACE Adaptive Capacity Analysis adaptive design

T NED (High scenario)

NED

NAVD88
WRelative SLR
" |Design without Adaptive Capaci
l)esign with Adaptive Capacity

.Design with Adaptive Capacity and Future Adaptation Source: Kate White webinar 2018,
USACE



NOI’th Atlantic Right %ales adaptation pathways

Plankton net towed from the stern; orange

colored plankton caught in sample bottle.

Taken under NOAA/NMEFS Permit #15415
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North Atlantic Right Whales

adaptation pathways

National Fisherman ...

£ X ©in ‘

Study says whales adapting to
climate change; so too must
mariners and fishermen
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Adaptive Management & Policy

ahsalior
Climate change Globalisation

“Putting things in place now, that will allow us to reach our (future)
goals. I like that,” said Brian Harper, civil works director of the Corps’

Regional Planning and Environmental Center. “Let’s use time as our

friend, not an enemy.”

Current Opinion = Environenental Sustamabsdily

Climate change and water security: challenges for adaptive water
management _
Catherine Allan’', Jun Xia” and Claudia Pahl-Wosti’



Session 3: Qe&A and

Discussion



Climate Planning
lixercise in Small Groups

Decisions for the Decade:
A Serious Game on Long-
Term Decision Making

Dr. Robert LLempert,
RAND



Discussion/Reflection



Session 4: Signposting
and CAMP4W
Adaptive Management



Subcommittee on Long-Term Regional Planning
Processes and Business Modeling

Signposting and Adaptive
Management

ltem 7d
March 18, 2024




Subject

Overview of Signposting and Adaptive Management

Purpose
Item 7d
Signposting and The CAMP4W process will establish a methodology for

et evaluating options through a Climate Decision-Making
P Framework and will provide a roadmap for identitying
Management
solutions to mitigating the identified risks. It will be a living
document that will be updated to identify changing conditions
and to report those changes to the Board.

This Committee Item focuses on the concept of adaptive
management and the development and use of signposts to
inform the process.



Adaptive Management Supports Informed Decision-Making

Adaptive Management:

Time-Bound 1.Provides a framework for decision
Targets guide support through time

project 2.Iterative process over time to balance
development and the risk of shortage and overinvesting

3. Updates resource development needs
and Time-Bound Targets based on
updated projections and Signposts

inform scoring of
projects

Signposts inform how
conditions are changing

\A

Scores and Time-Bound Targets inform decision-making



Signposts Facilitate Adaptive Management

Signposts inform
through regularly
tracking real-world
conditions

Adaptive Management Process

Planning for Rapid Change and Adjusting based on Real World Conditions

Check Point

Set Time-Bound
Targets

Go/No-go
needed

Check Point

\ \
Population Growth/ Population Growth/
Demand Update Demand Update

Assess Progress/Revise
Time-Bound Targets

Start
implementation

Go/No-go
needed

Check Point

Check Point

Demand Update

\>|
W

Assess Progress/Revise
Time-Bound Targets

Finish
implementation

implementation

Go/No-go
, needed

No-Go

DA - - ~ 2L alis]
Remove project from Clf

Assess Progress/Revise
Time-Bound Targets

| PROJECT(S)2
Finish
implementation

PROJECT(8)3
Start
implementation

Some projects coulc

Check Point
\
Population Growth/
Demand Update

Assess Progress/Revise
Time-Bound Targets

™ PROJECT(S)3 |
Finish
implementation

Go/No-go




Potential Examples of Signposts
Signposts should be measurable, updatable, readlly available

Population Demand Management Climate Change Indicators
- Population projections » Structural conservation progress « Carbon loading trends
- Net migration (installations/rebates/code « Average annual temperature
compliance)
Economy » Reported reduction in agricultural Regulations
« Employment irrigation - Listed species
- Housing permits - Constituents of concern
Regulations
Local Agency Supply - State Water Board water use Storage
. Maintained existing supply efficiency standards « Volume (AF)
\3) « Non-functional turf / AB
- New supply (AF) 1572 compliance (SF of turf

replaced)



Adjourn

March 18, 2024 Subcommittee on Long-Term Regional Planning Processes and Business Modeling ltem # 7d Slide 95
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