FUTURE SUPPLY ACTIONS PROGRAM WEBINAR SERIES

Reverse Osmosis: Pilot Studies Spotlight December 7, 2021 One Water

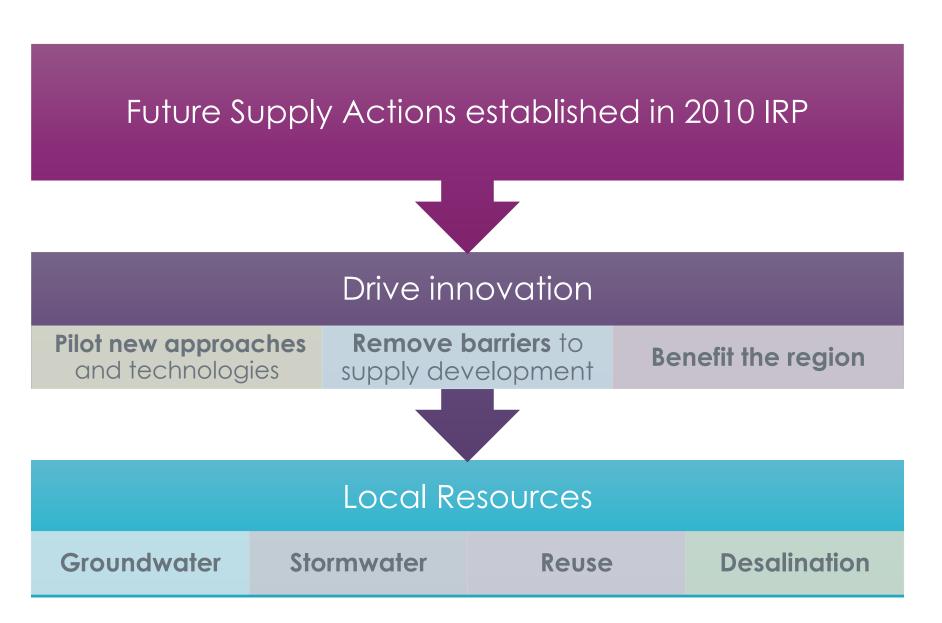
THE METROPOLITAN WATER DISTRICT of Southern California

123113 16:18 CH

THE LIVE &

Agenda

The Metropolitan Water District of Southern California


Nation's largest wholesale . water provider Service area: 19 million people/5,200 square miles/parts of six counties VEST BASIN BEVERLY HILL 26 member agencies • Supports \$1 trillion regional economy Imports water from Northern Sierra and the Colorado River, invests in local projects

Metropolitan's Role for Southern CA

Future Supply Actions Funding Program

Current Program

Member Agency

- 14 studies
- \$3.1 million

Water Research Foundation

- 6 potable reuse studies
- 1 agricultural reuse study
- \$975k

Speaker Spotlight

Megan Plumlee, Ph.D., P.E.

Research Director

Orange County Water District

Julio Polanco, Ph.D.

Postdoctoral Research Associate

Orange County Water District

Demonstrating Virus Log Removal in Potable Reuse to Increase Regulatory Confidence

MWD Future Supply Actions Program Webinar Series December 7, 2021

Megan Plumlee and Julio Polanco Orange County Water District

Acknowledgments

- Funding from MWD Future Supply Actions Funding Program, The Water Research Foundation (Project No. 5041), and the United States Bureau of Reclamation
- OC San staff and laboratory

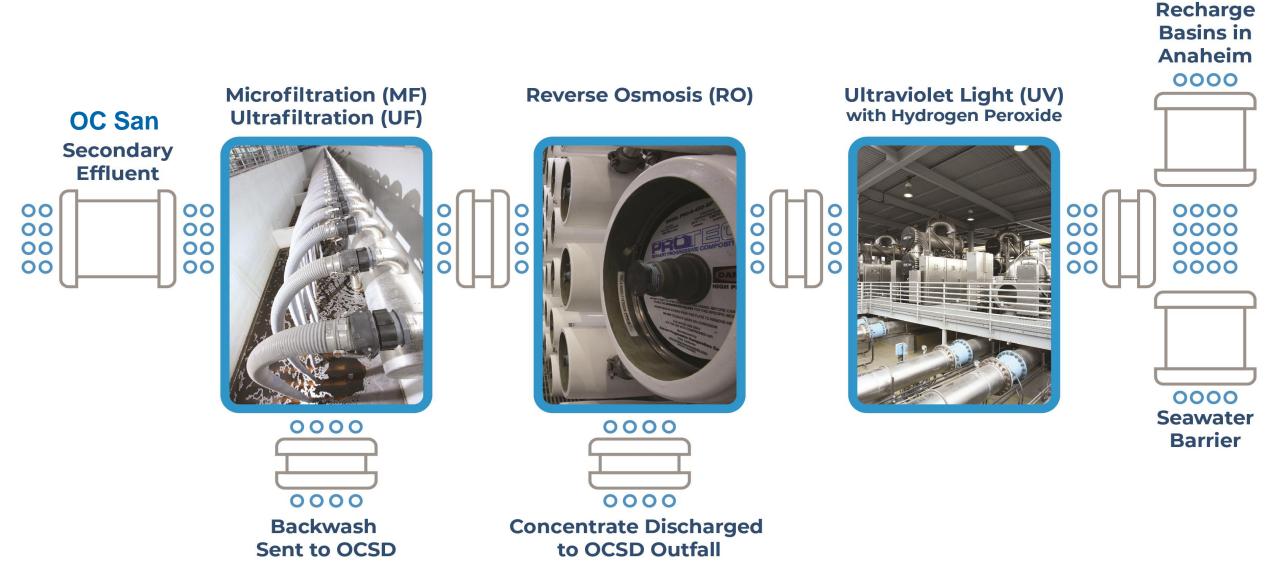
OCOSAN Treemo

Outline

- Background
- OC San Virus LRV Study
- RO LRV Study
- Q&A

Orange County Water District

- OCWD was formed in 1933 to
 - -Manage the OC Groundwater Basin
 - -Protect rights to Santa Ana River water
- Provide groundwater to 19 municipal and special water districts (2.5 million residents)
- Basin provides 77% of the water supply for north & central OC
- OCWD replenishes the groundwater basin via spreading ponds and injection wells



GWRS

- Operation since January 2008 for advanced water purification
- Largest potable reuse facility in the world (100 MGD)
- Provides a 103,000 acre-ft/yr source of water for nearly 850,000 OC residents

- Reclaims treated wastewater that would otherwise be wasted to the ocean, purifies it and recharges it to groundwater basin

GWRS Overview

Summary of OCWD LRV Credit and Proposals

Pathogen (Log Reduction Required)	Log Reduction Attained by GWRS Treatment Process					
	OC San	MF+Cl ₂	RO	UV/AOP	Underground Retention Time	Total
Current / New proposed as a result of this study						
Giardia (10)	0	4+	2+ / 3+ **	6	0	12+ / 13+
Cryptosporidium (10)	0	4+	2+ / 3+ **	6	0	12+ / 13+
Viruses (12)	0 / 0.7 (proposed) *	0	2+ / 3+ **	6	4	12+ / 13.7+

*Virus LRV credit proposed for OC San is pending DDW review of calculation options

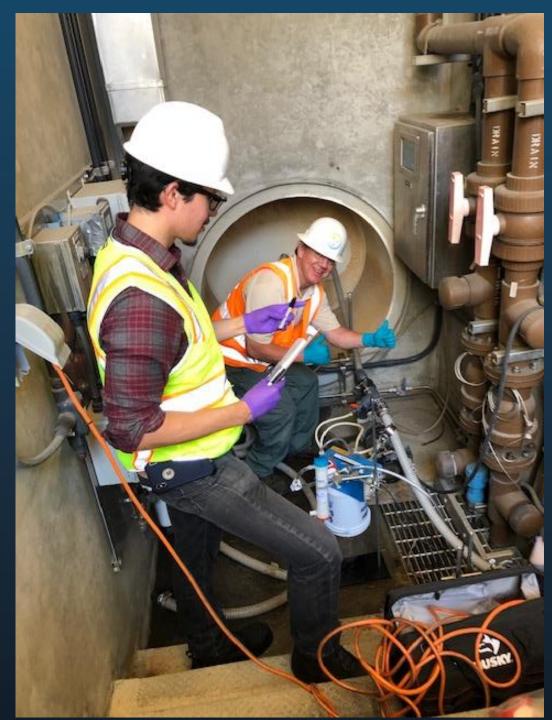
**Increased RO LRVs based on enhanced monitoring (e.g., sulfate, strontium)

OC SAN VIRUS LRV STUDY

Study Background

- OCWD GWRS currently receives OC San Plant No. 1 blended secondary effluent from 3 parallel processes: AS1, AS2, and TF
- After GWRS Final Expansion (2023), OCWD GWRS will also receive OC San Plant No. 2 TF/SC effluent
- OCWD currently receives no virus LRV credit for OC San wastewater treatment process
- OC San LRV study focuses specifically on virus credit (not seeking additional *Giardia / Crypto* credit)

OC San LRV Study Objectives

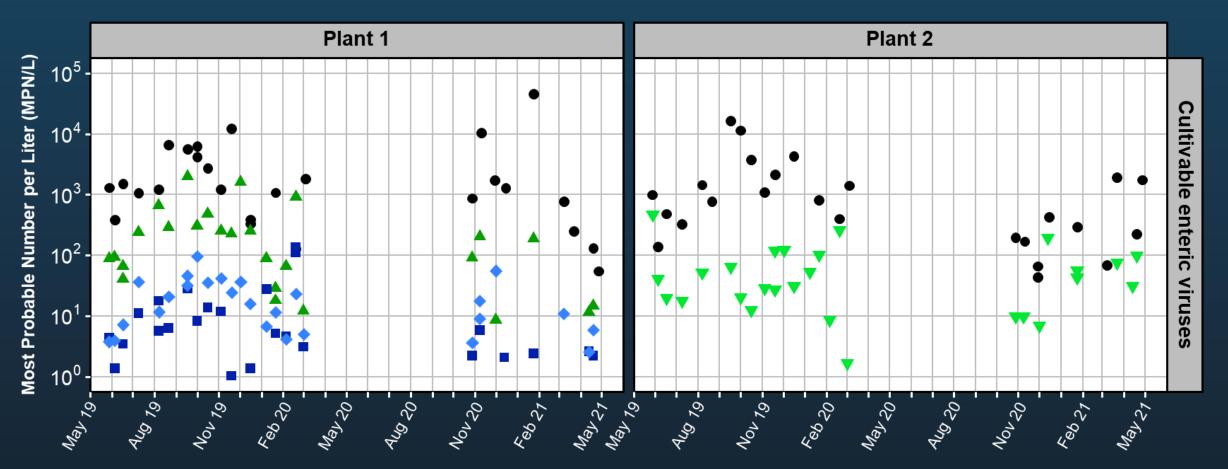

 Obtain virus LRV credit for OC San wastewater treatment process

1) Quantify virus and other microbial targets in raw influent and secondary effluents from Plant No. 1 and Plant No. 2 over 24 sampling events

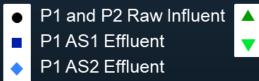
2) Calculate LRVs for each monitored treatment process using lognormal statistical modeling techniques

3) Propose a 5th percentile virus LRV

4) Propose conditional Operating Range Values (ORVs) representing a normal operating envelope

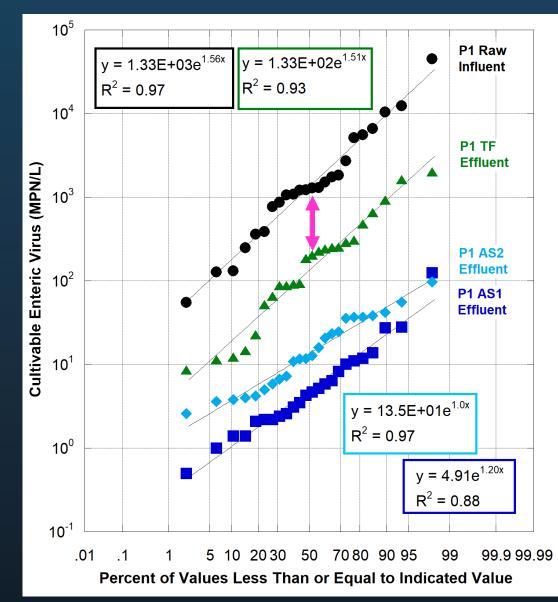

Microbial Targets

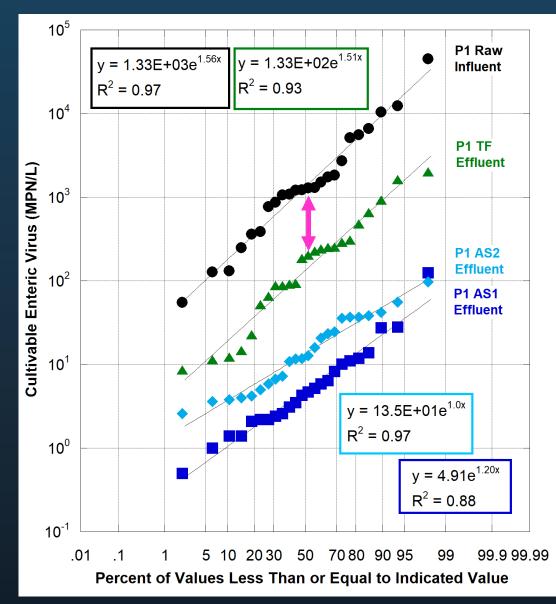
Constituent	Analytical Method	Laboratory	
Enteric viruses	EPA 1615 infectivity culture assay	Biological Consulting Services (BCS)	
Enterovirus and Norovirus GII	EPA 1615 modified ddPCR ¹	Michigan State University (MSU)	
Male-specific (MS) and somatic (SOM) coliphage	MS and SOM coliphage ² by EPA 1602	Michigan State University (MSU)	
Total coliform	Membrane Filter (MF) 9222B	OC San	
Fecal coliform	Membrane Filter (MF) 9222D	OC San	


ddPCR = droplet digital polymerase chain reaction; MSU = Water Quality and Environmental Microbiology Laboratory at Michigan State University (1) Enteric virus analysis with a modified ddPCR assay.

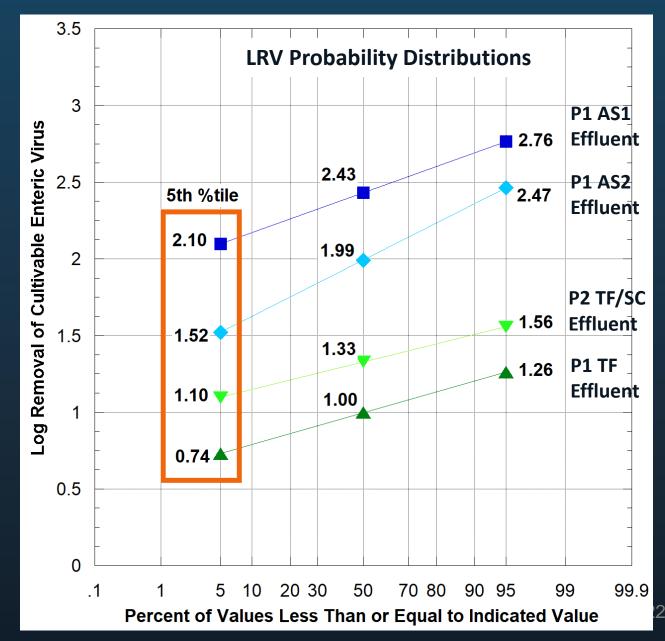
(2) EPA 1602 with double agar overlay modification.

Concentrations of Cultivable Enteric Viruses

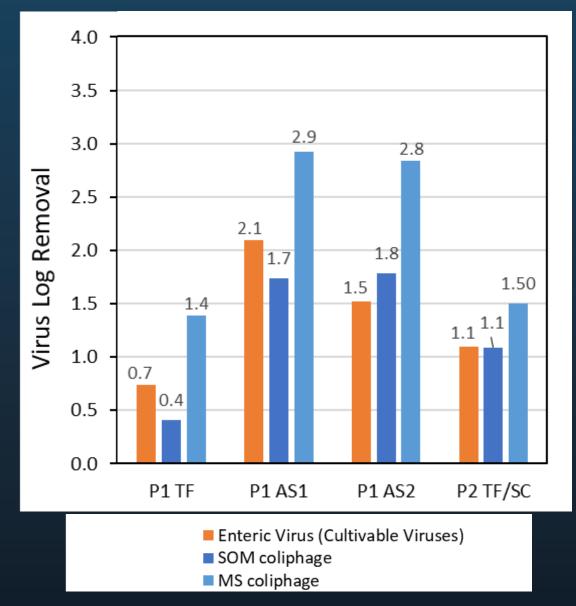

Sample Date (Month-Year)


*no non-detect results for influent or effluent

Probability Distribution


Methods to determine LRV

- LRV calculation methods:
 - 1) Same day pairing
 - Assumes same water parcel is sampled from influent to effluent.
 - 2) Monte Carlo approach
 - Iterative log-removal estimation based on influent and effluent statistical parameters (assumed independent).
 - 3) Covariance approach
 - A parametric evaluation of influent and effluent distributions that tests the variance of two dependent populations.


Covariance Analysis

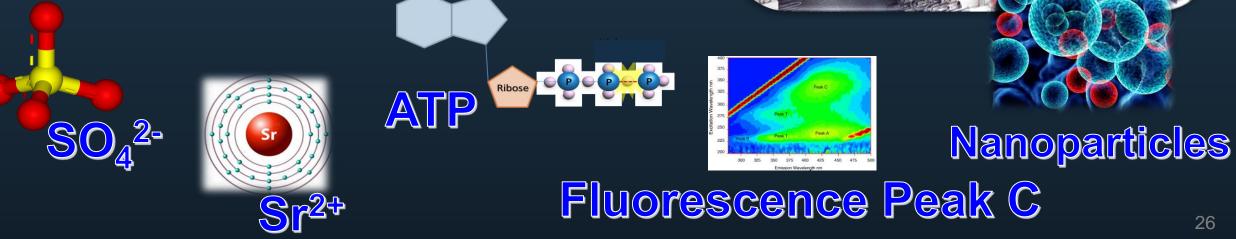
- The probability distribution of LRVs (right) shows 5th, 50th, and 95th percentile for each OC San treatment process.
- P1 TF process has the lowest 5th percentile LRV at 0.74-log
- LRV distributions for P1 AS1 and AS2 processes are higher than that of P1 TF and P2 TF/SC, consistent with concentration values shown previously.
- The covariance approach was recommended since this approach assumes (and tests) the correlation between the log-influent and log-effluent values.

Summary of Microbial LRV Results

- 5th percentile LRVs obtained for cultivable virus and coliphage using the covariance approach.
- Both P1 TF and P2 TF/SC show the lowest 5th percentile log-removal for all virus targets.

Study Findings and Next Steps

- Covariance approach for determining virus LRV was recommended by the GWRS Independent Advisory Panel (IAP)
- Due to the complexity of calculating an amalgamated estimate of removal for all OC San treatment processes, the <u>5th percentile value of the least effective</u> <u>treatment process</u> (P1 TF) was chosen as the proposed credit value to conservatively represent the OC San P1 + P2 processes.
- Pending DDW review of the virus LRV calculation options, <u>OCWD is</u> proposing a virus LRV of 0.7 and conditional Operating Range Values (ORVs) into the Title 22 Engineering Report.

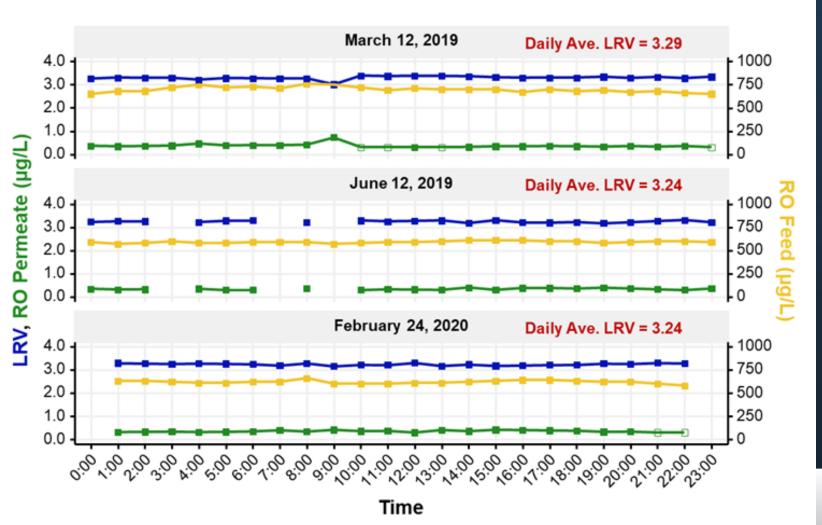

RO LRV STUDY

RO LRV Study Objectives

- GWRS LRV credit currently granted via TOC (~2 log) and EC (~1.5 log) surrogate monitoring
- Objective: identify easily monitored alternative surrogates with LRV > TOC via grab sampling and online monitoring over multiple months in a full-scale plant RO unit at OCWD

Summary of RO LRV Study Results

Surrogate	Study Average LRV	Min LRV	Max LRV
Strontium ¹	3.28	3.01	3.38
Sulfate ¹	2.90	2.79	3.00
Free ATP ²	3.03	2.60	3.30
Fluorescence Peak C ²	2.70	2.27	3.00
TOC ²	2.01	1.77	2.36
EC ²	1.50	0.72	1.54



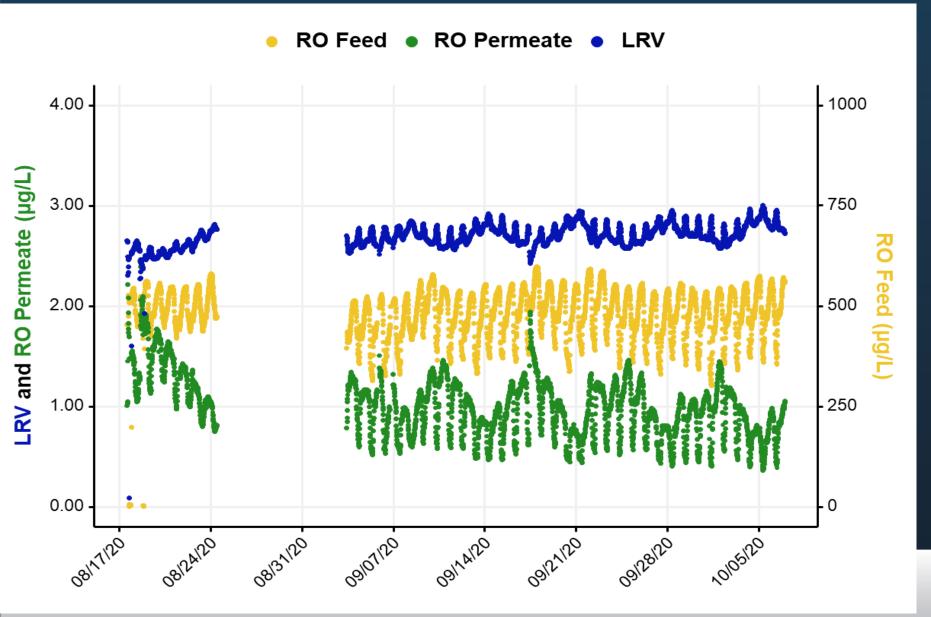
¹Grab Samples ²Continuous (online)

Unit B01 (Membranes: Hydranautics ESPA2-LD)

Strontium (Grab) – Hourly and Daily Average LRV Results

- LRV - ROF - ROP

Ave / Min / Max LRV = 3.28 / 3.01 / 3.38 (for the 3 events)


	Method	Instrument	MRL ¹
ROF	EPA 200.7	ICP-AES	10 µg/L
ROP	EPA 200.8	ICP-MS	0.30 μg/L

1) MRL used to calculate LRV when value was < MRL

ROP measured \geq MRL

ROP measured < MRL

Fluorescence Peak C (Online) – Continuous LRV

Ave / Min / Max LRV = 2.70 / 2.27 / 3.00 (over ~2 month period shown)

Continuous = measurement every second

Each graphed data point represents 15 min average of 1-second measurement

Lowest LRV of parameters studied, but inexpensive and easy to operate

Implications of RO LRV Study for OCWD and Other Potable Reuse Facilities

- Novel on-line methods are becoming feasible to enhance RO LRV credit
- Based on the project data, OCWD is proposing a tiered framework using strontium, sulfate, and ATP as alternative RO integrity surrogates into our Title 22 Engineering Report (T22 ER) to supplement TOC and EC (kept as backup)
- Findings from this study are being translated into direct applications
- Relevant to both IPR and DPR applications

Thank you

Any questions?

Speaker Spotlight

David Ahles, P.E.

Principal Civil Engineer

Eastern Municipal Water District

Christian Sanders, P.E.

Environmental Engineer

CDM Smith

PLACEHOLDER (Eastern)

INSERT SLIDES

Questions & Discussion

Backup Slides

